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A large part of the paper by Ferri [ 11 is devoted to a discussion of 

supersonic conical flows, for high Mach numbers and for bodies which pro- 

duce large flow disturbances. In particular, much space is devoted to the 
discussion of the properties of conical flows in the vicinity of the para- 

bolic (“sonic”) line. In the present note it is shown that the behavior 

of a conical flow adjoining a uniform flow along a Mach cone (parabolic 

line) cannot be described by means of the expansions proposed by Ferri 

and his co-workers. This circumstance eliminates the basis of the con- 

clusion about the existence of intermediate, transonic zones adjoining 
the Mach cone, as obtained by Ferri in his consideration of supersonic 

flow over triangular conical wings with cross-sections of rhombic type. 

The question of the possibility of the appearance of such regions is dis- 

cussed. 

We shall consider for definiteness a triangular conical wing having a 

cross-section of rhombic shape, in a uniform supersonic flow at zero angle 

of attack (Fig. 1). Due to the symmetry of the flow, we shall consider 

only the region x < 0, y > 0. We assume that the leading edges of the 
wing are supersonic. Since the resulting flows will be conical, the velo- 

city components and the entropy depend only on (= X/Z, 7 = y/z, or, if 

we use a spherical system of coordinates with origin at the point 0 

(Fig. 11, only on angular variables. 

The picture of the flow over the wing in the 6~ -plane is shown in 

Fig. 2. At the leading edge there originates a plane shock wave, repre- 
sented on Fig. 2 by the segment 4-3; behind it comes a region of uniform 
flow adjacent to the wing surface (the line 4-5-f). The uniform flow is 
separated from the conical flow by the corresponding Mach cone (the 

811 
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Fig. 1. 

elliptic arc 3-5). The curve 3-2 corresponds to a curved shock, originat- 

ing in the central part of the wing. 

The system of equations which describes conical irrotational (rotational) 

flows is of hyperbolic type, if the projection of the velocity on the plane 
perpendicular to the radius vector of a point in the xyz-space is greater 

than the local speed of sound; otherwise it is elliptic (mixed: two imagin- 
ary characteristics and two real ones). 

Fig. 2. 

In the uniform flow region 4-5-3 (Fig. 2) the solution is of hyper- 
bolic type. The arc of the Mach cone 3-5 is simultaneously a parabolic 

line and a characteristic curve. In Ferri’s paper it is maintained that 

adjacent to the uniform flow, along the arc of the Mach cone 3-5, there 
is a region with a hyperbolic solution (transonic region) 3-5-6 (Fig. 2). 

This region joins, along another parabolic line 5-6 (in Fig. 2a) 3- 6 (in 

Fig. 2b), a region where the solution is of elliptic type (f-2-6-5 in 
Fig. 2a and f- 2-3- 6 in Fig. 2b). Th#e transonic regions may be of two types 

(Figs. 2a and 26). The behavior of the solution in these regions is 

described by expansions which will be discussed below. 

Fig. 3. 

Following Ferri, we introduce a spherical coordinate system I/I, 8, r, 
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with axis in the direction of the uniform flow in the region 4-5-3(Figs. 

2 and 3). 

The Mach cone 3-5 (Fig. 2) maps on to the circumference 5’~ = IV of the 

unit sphere, where sin I/J* = M1 and M is the Mach number of the uniform 

flow in region 4-5-3 (Fig. 21. 

Instead of v”, u we introduce new variables II = \/ v,,’ + ~0’ and p, where 

tg p = v”/r; and we distinguish variables on the Mach cone by a star, 

thus 
un* = - a‘, ~‘=-$z 

1’ I *=a* I/M2-1, w* = 0 

(a*)is the speed of sound in the uniform flow). In Ferri’s paper an ex- 

pansion is obtained for irrotational flow in the neighborhood of an 

arbitrary elliptic (sonic) line; for the case of the arc of the Mach curve 

in the chosen system of coordinates it is written in the form 

U = a* (1 i- K,J*z + mQl + . . .) (1) 

-- 
ur _ a* 1/~/p _ 1 

vtl 
1 + ; (~2 - I)-‘” (y + l)l/'Kl;'aA~;'r -+ L--- 

(i “YS + 

are coordinates 

sin JldO 
___ = cos (B * r), d4z 

sin p = + 

and originating on the parabolic line; the index 1 and superscript in the 
formulas refer to the first family of characteristics, and the index 2 

and subscript refer to the second family; K 
12’ ml2 are coefficients of 

the series expansion of u in powers of Ai2 along the characteristics; $*, 
8 l are the values of $ and 8 for a fixed characteristic on the parabolic 

line; y is the ratio of specific heats. The dots denote higher order 
terms. 

From equation (1) it is evident that K cannot become zero, since 
otherwise one of the coefficients of A 5/2 

12 or A 12 ’ in the expansion for 
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” r would become infinite. It also follows from equation (1) that along 
characteristics 

Substituting (2) in (1) we obtain 

Now we shall consider not one characteristic but the whole family, 

e.. g. the first, then K1 is a function of I,/! and 8, K1, = K1($, 8), which 

remains finite as I/J-+ I,‘,* in arbitrary manner, since the family of 

characteristics fills the neighborhood of the parabolic line (on one 

side). We write 

Then 

lim Kl(+, 0) = K (0) + 0 
Q-d* 

K1 (4, 0) = K (0) - [K (0) - KI (+, e)] = K (0) + . . . 

and (3) may be written in the form 

n = (I* [l + ($i”’ (7 + I)-“‘K (f-$‘s(+* - +p’” + 1 

which is va1i.d for arbitrary 1’1 and 8 in the vicinity of rb = l/r*. 

Analogously we obtain from (1) and (2) 

p = - + x + [$ )” ( r+1~“~“(0)(~‘--)c... 

-_ 
uy = a’ dMz - 1 + u* (+‘- +‘) 

(4) 

(5) 

(6) 

The equation of continuity, after transformation with the help of the 

equations of momentum and energy, is written in the form 

(7) 

v,* aw 
+(l-~)~~-~(qi-&;l=o 

For irrotational flow 
au, a (11. sin JI) 
au -- a+ 

(8) 

We put (8) in (7), multiply the result by sin $(l - 1p2/a2)y1 integrate 
with respect to 8 from 8, to 8, make the substitution vn = u sin p, 
Y, = u cos p, (the purpose of the integration is to eliminate the deriva- 

tive dt~/dO) and obtain the result 
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8 

c sin JI (a2 cos2 j3 - a3 

4 
i 
vr (2a* - 2~2) + u sin f3 (a2-- ti2 ~082 fr) ftg + $ 

+ [(a” - u2sin2p) sin F - 2uz sin ~0~2 p] & + [(ns- u2 sir??) ~0s 

(4), (5), (6) and their derivatives respect 4’1 

(terms indicated by dots not affect the easy to Prove bY 

direct substitution the vicinity s/J*. esuation (9) has the 

form 
0 

a* - jy”* (T + f)‘” \ ;K’i* (8) do (q - g$‘* + . . . = 0. 
M 2 

8, 

Dividing equation (10) by ($* - 1,‘) , l/3 and letting (J approach I/J*. we 

find that (1 

f 
K’h (6) d0 rr; 0 (13) 

8. 

Differentiating equation_(ll) with respect to 8, assuming piecewise 

continuity of K(8), we obtain 

K (6) ES0 ti2? 

which contradicts the condition obtained earlier, that X f 0. 

This contradiction shows that the expansion (1) which is valid in the 

vicinity of an isolated parabolic (“sonic”) point of the type p = - n/2, 

does not represent a solution in the case where these points continuously 

fill the whole curve (Mach cone). 

The author of the present note investigated the behavior of conical 

flows in the vicinity of the Mach cone, with natural assumptions regard- 

ing the smoothness of the’ solution [ 21, and found that the expansion he 

obtains for F leads to an elliptic type of solution in the vicinity of 

the Mach cone. Other types of solution were not found, and Probably do 

not exist. 

As can be understood from Ferri’s Paper, the second parabolic line 3-6 

(Fig. 2b) was located in the following way. (Let us note at once that we 

do not consider the case shown in Fig. 2a. since we do not know any solu- 
tions of hyperbolic type in the vicinity of the Mach cone.) The form of 

the curvilinear shock 3-2 (Fig. 2b) was given; this made it possible, 

from the shock conditions and the equatjons of conical flow, to find the 

values of the velocities and their normal derivatives on the line of the 

shock, and thus calculate the values of the velocities at points near the 
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shock. 

From these values of the velocities the equations of conical flow were 

again used to find the normal derivatives, from which the values of the 

velocities were found at the next points, and so on. This leads to the 

appearance of the second parabolic line. 

Here it is necessary to draw attention to an important point, that 

along the line of constant entropy 3-1 (Fig. 2b) there is a joining of 
irrotational and rotational conical flows. (In what follows we shall call 
lines of constant entropy streamlines; they are indicated by dotted lines 
in Fig. 2). We now investigate the properties of the transition across 

such a line. The system of equations describing rotational, conical flows 

with constant (total) enthalpy, has the form: 

L, = (U-SW) ( u2 + v2 + w2 

2 >, + (v - qtfl) (u2 + v; + w2)n + a2 (&J~+ ?Wn-- n<- Vn) =o 

L2 = 1u ([US + ‘/Ivc + We) + (2. - -qw) (Ve - UJ + a2se = 0 

LB = w Ku, + TV* + WJ + (u - Su,) (un - Ve) + a2sq = 0 (13) 

L, = (u - SW) SE + (v - ?po) s_ = 0 

Here s = S [ (y - 1) yc,,l -I, S is the entropy, cy is the specific heat 
at constant volume, u, v, w are velocity components in a Cartesian co- 
ordinate system, o is the speed of sound, 

(12=a~2-1/,(~-1)(W,2-u2-v2-~2), 4=x/z, r)=ylz 

where ao, WO are the speed of sound and the flow speed at a certain Point. 

Equations (13) are a combination of the equations of momentum, con- 

tinuity and energy. 

Let us substitute for L2 = L3 = 0 the following equations 

more convenient for what follows: 

L,=L2(u-~W)+LI)(v-~w)=t;[(U-~~~~)~,+(v-~~)~,l+ 

+ q [(u - SW) us + (v - w) q + (u - 04 WC + (v - vu) Wl = 

Lo = -La (v - ?iul) $ LB (u - SW) = w {E [(u - SW) un 7 (v - V”) UC1 

which are 

0 

t 

+ -q [(u - 5w) vq - (v - ?p) UC] t (u - 5,l.l WI) - (v - VJ) We) + 

+ [(u - t;w)2 + (v - 7Jw)21 (Un - UC) + a2 I(u - b) sI) - (v - vu) Se1 = 0 

The system (13) is equivalent to system (14): 

L1 = IA4 = Ls : L.6 = 0 (14) 

From the form of the equations L,, = 0, L5 = 0 it follows at once that 

the streamlines, defined by 
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d5 d? -=- 
U- TW v - -l,u: 

are double characteristics of the system (14). The remaining two charac- 

teristics, as may be shown, are determined by the same equations as in 

the case of irrotational flow 

d? B & v/B”- AC -- 
de - A 

A = .a (1 + te) - (u - E,w)a, B = a251 - (u - 4~) (u - qw), C = u2 (1 f ~2) - (v - YJW)~ 

The characteristics do not coincide with streamlines. 

Since the streamlines are characteristics of (141, derivatipes of s, 

as well as of u, V, 10, may have discofktinuities across them. We introduce 

the variables p, Q by means of the formulas c = ((p, a), 71 = q(p, CT), 
such that p = const along a.streamline and o = const along a normal tra- 

jectory to it. 

In the new variables, system (14) is written as follows: 

Ll = [(~-riW) 5, - (u - 04 $1 cuz + u; + W2 ). + Q2 [E (q,wp - q,w,) + 

L4 = s, = 0, L5 = Fu, + TV* + 1L), = 0 (15) 

From system (15) it is clear that specification of II, u, w as a func- 

tio‘n of ots = so) along a streamline p = po, does not uniquely determine 

the normal derivatives u pa VP’ wp’ spn that is, they may have a discon- 
tinuity here. 

Inasmuch as the streamline 3- 1 (Fig. 2b) separates an irrotational 
flow (S = const) and a rotational one (s = sP), therefore s (or higher 
derivatives of s with respect to p) have a discontinuity, a!d therefore 

the derivatives u , v , w (or their higher order derivatives with respect 
to p) must have aPdi&ontl?*nuity, as may be seen from the equation L6 = 0 
in system (15). 

For irrotat ional flow 5u, + VP + WP = 0 

SaUp-SpU,+?,Up-Tip~‘,-(~Up+112.‘p.tWp)o-(SIL,+Yiv,+uJ ) =o = P 

Evidently, a discontinuity in the derivatives of u, V, IO was not 

accounted for in going across the streamline 3-1, and the smooth contin- 
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uation of the solution from the shock across the line 3-f always led to 

the appearance of the second parabolic (“sonic”) line 3- 6 (Fig. 2b). 

From the above, it follows that the question of the appearance of a 

second sonic line, and thus, an intermediate transonic region, requires 

further investigation, and it is possible that they do not exist in 

general, in an exact solution. (Possibly at point 3, Fig. 2, a forked 

shock is produced.) 

We note in passing, that in the article by Fowell [ 31, in the numerical 

solution of the problem of a triangular plane wing, the possibility of a 

discontinuity in the velocity derivatives on a line analogous to 3-1 was 

not taken into account. For that reason it is not clear to what extent 

the calculations of Fowell take into account the flow vorticity, and 

whether they may be considered an “exact” solution. 
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